iRead, iLearn, iWrite. Hence, iBlog.

For Indian Military, Nuclear & Space matters, visit:

Saturday, October 25, 2008

USAF B-1B Lancer Wallpapers

Some pictures of the B-1B Lancer that I have been using as my desktop Wallpaper.

All images have an aspect ratio of 4:3.












Thursday, October 23, 2008

Why India MUST pursue the development its own, credible Space-based capabilities? 02

You may read the Part 01 here

India yesterday achieved, what ISRO termed as, a textbook perfect launch of the Chandraayan-1 mission payload. It has currently been placed in a transfer orbit around the Earth, where it would be rotated around to add enough momentum to it to then whip it across into the lunar orbit. It is expected to enter lunar orbit in 15 days time. Its progress would be followed with eager anticipation.

As was being stated in the earlier post, India has some pertinent reasons for developing its own, field-tested [] Space Technology.

Show me the moolah!

All the reasons stated thus far are being shown to bear favorable results no earlier than after 20-30 years. Yet the most important reason for the continuation of our research into Space Technology is a lot more near term and probably even more important – Money.

Only nine countries till now have successfully demonstrated its ability to launch a satellite into Space. Of these Iran’s claims has often been disputed due to lack of adequate evidence to support the claim. On the other hand, France and the UK have pooled in their resources and have become members of the seventeen nation European Space agency (ESA).

Not counting these nations, including the ESA members, there are about 29 other countries that have successfully built their indigenous satellites. This number is only expected to increase as more countries develop their own indigenously made satellites. Due to the absence of their own launch capability, these countries are making use of services offered by the countries that do posses the expertise.

India, with its tested and proven PSLV capabilities and highly skilled Scientist and Engineering manpower is in a unique position to offer its services and facilities to these countries at an extremely competitive price compared to its  counterparts.

The Antrix Corporation, a section of ISRO, has been set up to explore and make use of the commercial possibilities of ISRO’s launch capabilities and expertise. Within a span of 16 years, the Antrix Corporation has had a turnover of $66.66 million USD. This number, though impressive, represents a miniscule fraction of the global business transaction in Space Technology and services.

Tapping into the extremely lucrative launch of the commercial communication satellites would need India to develop launch capabilities for satellites weighing more than 2 tonne and placing them into Geosynchronous orbit [India’s INSAT series of communication satellites weigh excess of 2 tonnes].

Development and and validation of India’s GSLV technology would enable it to launch these communication satellites. Not only would India then no longer have to seek services of other agencies for its own launches of its heavier satellites, but it can extend these very services to other countries with similar requirements.

How profitable is the launch of commercial satellites? Consider this - in 2007 Arianespace had a turnover of $1.28 billion USD and is only expected to increase for the year 2008.

In spite of ESA, member European nations have made use of Indian facilities for the launch of their satellites, most notably the Italian Agile which was also India’s first commercial launch, performed specifically to launch the 350+kg Italian satellite. Besides the fact these were lightweight experimental satellites, the principal reason for this has been the extreme value-for money offered by launching them from India.

With India gaining similar capabilities as that of Arianespace, it should be in a position to offer their services at a fraction of the cost (1/12th the cost, according to some estimates) and still make it an extremely profitable venture.

Projects like, the Chandrayaan mission also serve to act as a confidence-building exercise among the other potential customer countries who might then consider entrusting us with the launch of their satellites.

A self-sufficient ISRO, contributing to to the national coffers, would thus contribute to the  socio-economic developmental efforts of the country. This venture termed frivolous and waste of public funds would generate the fund in proportions not matched by any other sector.


Ignited minds

An argument, considered blasphemy, especially if you are a red-flag waving communist hoodlum - An active Space program and other allied high Technology R&D ventures are the fuel to inspire the countries Scientists and Engineers to stay back and work for the country’s cause.

As Engineers and Scientists, yearning for a challenge, that pushes the boundaries of intelligence and expand this boundary in an effort to find that one path-breaking solution that paves the way for grand ventures, is extremely high.

An environment that lets these individuals lets their minds run free, unconstrained by factors of economics and earthly issues [pun intended ;)] is encourages them to stay put in that environment. The outcome of such free-runs often result into a development that benefits the whole community in a manner not envisaged at the time of development.

It is now pretty much part of urban folklore how extremely lightweight but much stronger composite materials developed for making the nose cones of warheads of missile developed under IGMDP are now being used to make prosthetic limbs [pdf]  that are much easier to use.

It is estimated that more than 90% of projects sanctioned by DARPA never leave the laboratory. Their results, however are made use of to solve a wide variety of real-world problems.

India similarly had initiated ‘Project Devil’ to achieve similar ends of challenging and galvanizing its Scientists and Engineers for future programs. It was the precursor to the IGMDP which resulted in the successful development of 4 of the 5 missile proposed.

Even if we are to assume that the Moon missions by India have no Scientific value [a totally flawed assumption], it must be remembered that the Chandrayaan-1 mission cost India just $85.7 million USD in 2008. Compare that with the $440 million USD that Microsoft paid for acquiring Hotmail in 1997 and it should put things into perspective as to how cost-effective India’s space program is. Is it such a huge amount to help create an environment of challenge and encouragement for our Nation-builders?

The point being made is that Scientists and Engineers form the backbone of progress of a nation. A nation that nurtures and encourages its Engineers and Scientists is destined to be on a path of success and advancement. The offshoots of the pursuits of such program will find ways of benefiting each and every strata of society.


Employment opportunities and ancillary Industries

The number of Scientists and Engineers currently employed with ISRO would need to be increased as our Space program develops. This would provide for attractive employment opportunities to the large number of Engineers graduating from our Universities every year in India. The opportunity to work in advanced technology programs would also help bring more and more bright and talented individuals into the National fold. This increased pool of talented individuals working within the country should only help further the National cause.

A fledging space program in the country acts as the catalyst for setting up ancillary privately-owned industries in the country. It would also serve as an opportunity for individuals to become entrepreneurs serving this industry. These industries would act as feeders for supplying our program with the much needed sub-systems needed to accomplish their stated missions. Such industries would provide for additional employment for highly skilled Engineers and Scientists in order to keep up with the demands of the program.

A well-developed industrial base would help promote trade and export [within the framework of legality] to countries with countries having their Space Program in its initial stages. Through Antrix Corporation, India does offer technical assistance to such countries. The quantum of assistance and revenue generated from it would only increase further as our own expertise increases. Our Moon mission serves as an ideal platform to demonstrate our expertise in this field and furthering our avenues of revenue generation.

ISRO currently faces a severe problem of attrition and inadequate manpower to sustain the already approved programs. Programs like the Chandrayaan mission would only help attract and inspire more people to consider working with our National institutes of R&D.


But Why now?!

An argument that is often echoed – What is need to allocate resources now when the problems it would be expected to solve would not be upon us for the next 70-100 years from now?

The answer lies in the fact that that such Technologically challenging programs have extremely long gestation period. This problem becomes even more acerbating in a country like India where the private sector is still not developed enough to provide the assistance or infrastructure needed for such programs. So these Government organization often first have to build up such supporting infrastructure themselves before they can proceed with the actual program [case in point – Lockheed Martin sources its primary Engine for the F-35 JSF from Pratt & Whitney, a privately-owned company. India had to setup the government-funded GTRE for developing the Kaveri Engine for the LCA program]. Such need for infrastructure building further delays the process of the work on the actual program.

Having said this, developing sustainable, fool-proof Space capabilities is challenging even without the hindrances mentioned above. The already complicated process of leaving the Earth’s atmosphere is increased manifold when a human is expected to be on board the craft. Developing the life-support system for such mission, for example, is a challenge that vexes even the most advanced of Space Nations even now with their strong foundation of Science of Technology. Taking this view in to account, India whose Space program is just crossed the lines of infancy is progressing extremely well with its own Space Program [a not-so-accurate-but-good-for-argument comparison – USA sent its first mission to the moon 183 years after gaining independence. India sent its own mission 62 years after its independence].

The technology that needs to be mastered to sustain life in outer space would need repeated testing and validation for fool-proofing which can only be done over a period of time and building up of the necessary infrastructure to do so.

Such complex programs that involves interplay of various allied and complementary branches of Science and Technology are also expected to face stiff challenges, overcoming which would need would need time and resources. Allocating time and resources from now will have us prepared and ready when the time come in the future.

Doing so from now would also give us the expertise and credibility to guide and help other nations who would also venture into similar programs of their own. This helping and offering guidance is also an opportunity to generate large amount of revenue for the country that could then be utilized for social welfare programs.


Everything gifted by the Russians

Yet another accusation leveled against our space program – we have got everything on a platter from the Russians and are simply using old-defunct Russian technology.

It is true that we have learnt and mastered a lot of our Technology from the Russians and continue to take help from the Technology and facilities for our program. But this relation with the Russian should not be viewed any differently from how one may view the relation between a student and teacher. Russian with their long history of space program has a lot to teach us as we would to the other countries having a newer program than ours. The Norte Americanos, secretly dismantled in complete German space program facilities and smuggled them into the American mainland and gave amnesty to German scientists who were part of the Nazi War machinery as part of Operation Paperclip. In return these scientists were asked to further America’s own Space program which was yet to pick off. Why are no such allegations being leveled against them? Are they not a more appropriate candidate for these charges?

As for leveling charges that we are using of Russian technology for our space program and passing it off as ours, it stems from the fact that we use Russian-made Cryogenic Engines for the final stage of out satellite launch vehicles. Considering the [small] size of the fourth stage of the vehicle, developing an fully-functional indigenous engine that can be fitted in the space is challenging and developmental work is being carried out at the Liquid Propulsion Systems Centre (LPSC). The prototypes engine has also been test-fired successfully and would need more tests and validations before it can be incorporated into the launch vehicle [the engines were run for around 480 seconds whereas the final stage needs to burn for around 700 seconds].

For developing a Technologically strong country it is necessary that we do not shirk from investing in a high-technology Space program. It will reap benefits as time progresses and its benefits will percolate to each and every sector of our Society. Let us not be clouded by myopia, when commenting or passing judgement about the awesomeness emerging out of the Government laboratories. Our country needs an advanced Space program, which is being provided to us by our government labs. The Engineers and scientists working there deserve every bit of resources and respect entitled to them and lot more.


Technorati Tags: ,,,

Wednesday, October 22, 2008

Why India MUST pursue the development its own, credible Space-based capabilities? 01

In a couple of hours from now India would become only the sixth country in the world to have successfully propelled a man-made object towards our closest celestial neighbor – the Moon. The country is gripped with excitement and anticipation of this momentous occasion. If not for anything else, just seeing their tax money reaching a place farther than anything Indian has ever reached thus far is cause enough hook people in.

People whose earlier association with the Moon had only been restricted to quoting loony lunar poetry in an effort to get laid have been similarly gripped by this surge of pride and excitement.

In midst of all this Nationalism, voices from certain quarters have expressed their reservations about such pursuits. They have questioned the rationale behind the need of an admittedly developing country to make its presence felt on the Moon. The justification often hinges on the argument that  a country like India needs to first address and resolve issues like poverty and food supply before venturing to fulfilling such ambitions.

Though I am inclined to believe that their argument does hold some merit, the arguments supporting such projects would simply outweigh these oppositions by a long margin.

Trying to list down some of the most obvious and compelling reasons for India to develop such capabilities.

Mineral wealth:

One fact that is never disputed – mineral resources on our planet is finite and is being depleted at an alarming rate. In order to sustain life, it is imperative to discover new sources of mineral to feed our industries.

The Chandrayaan-1 mission has one principal objective – to locate and map the mineral reserves present on the Moon. Considering the Moon was once believe to be a part of the Earth (3 of the 4 answers of the origin of the moon has Earth playing a major role in the Moon’s formation), it is expected to have the much needed mineral deposits in around the same proportion as that on Earth. The Helium-3 isotope, a rarity on Earth & an ideal fuel for the generation of energy using Nuclear fusion is also expected to be present in significant quantities on the Moon. 4 of the 5 indigenously developed payloads that is being sent by ISRO [a total of 11 payloads will be carried] will be used to gather data that would address these issues.

The Hyper Spectral Imager (HySI) will map the lunar body for mineral resources. The data obtained from the Terrain Mapping Camera (TMC) and Lunar Laser Ranging Instrument (LLRI) would be used to prepare a detailed three-dimensional map of the lunar surface with accurate representation of its topography. This would than act as reference guides for future missions when landings on the Moon’s surface would be achieved. Similarly the Moon Impact Probe(MIP) is being used to test and validate the technology that would be needed when we actually land on the surface with some significant presence. The payloads of the other countries will perform similar tasks and their data too shall be available for our analysis and use.

Critics argue that the Moon has been explored completely in all respects by the preceding missions and the Indian mission would just be a duplication of efforts. These claims are, however, not being substantiated with satisfactory evidences. For the sake of argument let us assume that this claim is valid and the complete mineralogical mapping of the Moon’s surface has already been performed by the other countries. Would it, however, not be naive of us to expect the other countries to share the complete authentic data with us. These countries would be even more hesitant to release the necessary data into the public domain, knowing fully well that countries such as ours are developing the necessary technology to use such data for fulfilling our needs.

So in spite of the data already being generated by the other missions, we are left with no other option but to gather our own data for use in the future when we would have the required technology in place to put it to use.



China shoots down one of its own defunct satellites orbiting in space....USA renews its interest in developing a Space-based defense platform.

Such News appearing in the public media are a precursor of the things to come. Satellites form the very backbone of a Technology-aware nation. Almost every aspect of the life of an individual in such a country is influenced or touched upon by the orbiting satellites above. The country’s communication network, the guidance system of its missiles, the search for potential oil fields [liquid gold] or mineral deposits....everything that is needed to sustain life as we know it is dependant on the smooth functioning these satellites. Any harm done to these satellites would have serious ramifications on life  back on Earth.

In such a scenario, it should be deemed necessary that India develops a credible deterrent to thwart back any such attempts on our assets in space. Developing a Space-based defense platform, is the need of the hour for India considering the increasingly hostile posturing by Chine with its repeated incursions into our sovereign territory. This very neighbor had exhibited its ability to take down targets in the outer space.

Though taking down a satellite requires the development of Defense technology, protecting a satellite would require the development of an additional Space-based technology.

Only when Power respects Power, will you have lasting peace between the two Powers.


Colonization or Space-based living arrangement:

Our population is increasingly rapidly, the Earth is becoming polluted at an alarming rate - living conditions on Earth is deteriorating and showing no signs of improvement. It is therefore becoming necessary to make plans for the future for developing alternate living arrangements.

Given the knowledge and resources we have, the ability to colonize a favorable planet or build a suitable living arrangement in Space must be developed and ready for implementation if and when the time comes. Such a need arising some 100 years from now should not be very hard to fathom.

I foresee such a venture to be  collaborative effort between partner countries, pooling in their resources and knowledge towards the common cause. India with its second largest population [probably largest by then] would have a lot to lose if denied access to such an arrangement. In order to be part of such a project, we would be expected to contribute towards the technology of this project.

Developing competency in Space Technology would pave way for the continuation of our existence in the future.

(Anybody trying to brush off this argument as ludicrous need only to look at the ISS – the process of developing, testing and validating the Technology has already begun.)........

You may read Part 02 here

Technorati Tags: ,,,

Saturday, October 18, 2008

Use Paste and go feature add-on in Firefox

Paste and go add-on for Firefox The Paste and Go add-on is now compatible with all versions of Firefox. This useful add-on had stopped functioning earlier once users upgraded to Firefox 3.x. The developers have now addressed this issue and it is working fine with the latest versions of the browser.

The Paste and Go add-on for Firefox replicates the very useful built-in feature of Opera by the same name. It lets you paste any word or URL and run it in one smooth action, thus eliminating the need to do so using multiple mouse clicks or keyboard actions.

So if you had uninstalled the add-on earlier, go right back and reinstall it.


Tuesday, October 14, 2008

Track down plagiarism with Copyright Spot

CopyrightSpot Alpha 

Watch out plagiarizers! There is a new sheriff in town and he means business. Copyright Spot is web-based service that lets you find out other sites that are leeching content off your website for its own gains. This service is quite similar to Copyscape. However Copyright Spot does offer some distinct advantages over Copyscape, at least its free version.

* Number of queries per site – Unlike the free version of Copyscape that is restricting the number of queries per month for a site, Copyright Spot currently allows unlimited queries.

* Number of Search results – Copyscape restricts the number of number results in the free version. Copyright Spot is currently giving away all the results without any restrictions.

* Quality of results – This one was a big surprise. Copyright Spot gave much more relevant results than Copyscape. I selected a random post from my blog and ran it through both of them.

The result obtained from Copyscape (L) and Copyright Spot (R).

Copyscape and Copyright Spot

As evident, save the second entry, all the results thrown up by Copyscape are sites where I am registered and some snippets of my blog are meant to appear there. So this result was hardly helpful. Copyright Spot on the other hand listed out those additional sites [marked in red] that incidentally have almost all the posts from my blog with all its content posted there. Would this change if it was tested using the premium version of Copyscape? I don’t know. It does appear that Copyscape is making use of Google’s cache for the lookups while Copyright Spot is using Yahoo!’s. Did not find this page listed in Google’s search either while found it in Yahoo’s. Just a hypothesis.

* Convenience of use – Copyright Spot allows you to simply enter the URL of your site’s feed and it will list out all the posts made on the site. To check weather a particular post is being plagiarized, you simply have to click on its URL. Copyscape on the other hand, makes you enter the URL of each post you want to check for plagiarism – a tedious task IMO. Copyright Spot scored big time over Copyscape on this front.

The service is currently still in Alpha stage and have announced that they would be introducing some premium features soon. Weather they would continue giving away these existing features for free in the future is unknown, but as of today if you need some free lookup service, then Copyright Spot it should be.


Share your Engineering videos on Mechanical Engineering TV

Mechanical Engineering TV

YouTube for Engineers would not be an inappropriate description of this site. Mechanical Engineering TV is a niche site that caters to the exclusive viewing pleasures of Engineers ;).

Everything YouTube has, so does this site. Only difference – videos uploaded here are all relevant to Engineers and Engineering. Sign up and start uploading your Engineering videos for people to watch, rate or comment upon. If you simply want to watch these videos, then you may do so without registering.

This site is quite new and not surprisingly hosts a modest number of videos and registered users at present [at the time of writing 280 videos and 110 registered members].

Exercising strict quality control to ensure all videos uploaded relate to either Science or Engineering would help make Mechanical Engineering TV a popular destination.

One downside though was the relatively long time it took to stream and buffer the videos compared to a same length video streamed from YouTube or Google Videos. Hope it is addressed at the earliest. Also the domain name has been registered for 2 years only and expires in 2009. Might raise a few doubts. Otherwise a novel service this site is.

Some recommended viewing

Solar surgery

Popular Mechanics The New Technologies of War


CERN:Theory of the black hole

flexcell duo 08 ROBOT


Sunday, September 28, 2008

Get a copy of IBM Lotus Symphony sent to you for FREE

IBM Lotus Symphony

IBM is sending out copies of its Lotus Symphony Office Suite, for free.

This Office Suite contains

    • A Word Processor - IBM Lotus Symphony Documents [M.S. Office equivalent - Word]
    • A Spreadsheet application - IBM Lotus Symphony Spreadsheets [M.S. Office equivalent - Excel]
    • A Presentation application - IBM Lotus Symphony Presentations [M.S. Office equivalent - Powerpoint]

You may place an order for your copy here.

Thanks Manish for the info.

A Suggestion: Since the Office Suite is a Freeware, you can also download it from their website – a quicker and better option IMO.

Order the CD only if you have a very slow Internet connection or no connection at all [just my personal stand].


Friday, September 26, 2008

My encounter with a plagiarizer [aka Fraudster]

Close enough to how I feel

Gentle(wo)men, I have arrived. My blog is on an illustrious path to greatness; a path, aspired by all but tread by  only a miniscule few till now - indulging in an occasional self-delusional reverie is quite pleasant an experience :-).

Net folklore are replete with instance of monsters (leech sites) trying to steal and drink the immortality potion from the honest-to GOD, hardworking farm boy [me, the David-sque Blogger]. Till the farm boy rose up to the tyranny and slayed the monster. Okay, its not all that dramatic, but if I can’t indulge in a bit of hyperbole on my own blog, where can I?

Towards the beginning of this week, I discovered that a website [from now on referred to as a ‘dust-bin’], had been displaying posts from my blog on its site and re-directing it under its own URL (made me feel a little important initially – after all you only copy stuff that you know is good, hence the first few sentences). Anybody clicking on that link would come to my blog, but the address in the address bar would still be shown as that of the dust-bin. To compound to the matter, these re-directed posts made its way into search engine results and many were being displayed even before my own.

my mail to the dustbin owner Even though this blog is not monetized, being at the receiving end of a plagiarism attempt hurts in no small measures. A look at the dust-bin indicated that it had used one of my combined feeds which I had directed through Yahoo! pipes. It included feeds from my Tumblog along with this. Since it was not being used for anything significant, I disabled it so that the dust-bin would get no more fodder from my blog. Being a little pre-occupied with college stuff, only yesterday was I able to send them a mail asking them to remove my blog and all my posts from their dust-bin.

Dust-bin owner replies back, giving excuse Instead of complying with my request, the dust-bin owner tried to justify his fraudulent practice by claiming that it is good for the target blog [my content appears under your URL, no back links for my posts, a Ph.D in Quantum Mechanics needed to figure how to disable the re-directed URL – a lot of good it does to my blog].

My reply to the dust-bin owner So I sent the guy another mail reiterating my stand of getting my blog de-listed from his dust-bin.

Dust-bin owner sends message to his goons Came back home, to receive a BCC of this mail. Felt quite not-so-bad.

Such fraudulent sites exist for one reason only – money. If you have to hit them, hit them where it would hurt them the most – tell them that you are willing to cut off their supply of money. I mentioned contacting his advertisers and informing them, and as a result, got his undivided and immediate attention [a reply from him in just around an hour].

Knowing that his conduct is essentially a criminal offence I mentioned the Information Technology Act 2000 and informed him of my willingness to file a complain. If you are from a different country, then you should explore similar Acts that has been legislated by your country. As an afterthought, I even considered contacting his host and informing them of the kind of site they are hosting. I informed him about this too. Not surprisingly my site was de-listed from the dust-bin.

Since the site is hosted in the United States of America, the option of filing a complain under the DMCA was also available to me, but had no intention of doing so – its the personal blog of your everyday Engineering student after all. But if you have the time, knowledge and resources and have a lot to lose due to plagiarism, then by all means do pursue that course of action.

If you visiting my blog, and reading this, do pay the offending dust-bin a visit and checking if he is stealing backlinks from your site.

Not sure if how helpful I would be, but if you need some help from me regarding this, then feel free to mail me – my email is listed in the About me page [my messed up template is preventing comments from being posted on my blog].


Wednesday, September 24, 2008

Engineering power behind NASCAR & Dragster races

Nascar Racing pit babes If you are an Auto fiend and an Engineer(-ing buff), then the articles published in this month’s Manufacturing Engineering magazine should be of interest to you. Published by the Society of Manufacturing Engineers, these articles give a glimpse into the Engineering muscles flexed in order to make NASCAR & Dragster racings possible.

Going through the articles, realized that these guys make use some seriously bleeding-edge hardware to fabricate components used in these cars - PM-600 Cosmos five-axis MC, MCV 4020 VMC and the likes. Some of the Machine Tools deployed achieve tolerances measured in microns.

In spite of operating a setup having typically low volume production runs, the fact that the teams chose to make use of these Machine tools, speaks in no small terms about them.

Not only are they using cutting-edge machine tools, but the teams are also deploying ERP solutions to handle their inventory,logistics & production scheduling.

These races showcase the very best of Automotive Technology and team owners and suppliers employ the very best of Manufacturing Engineering to gain that competitive edge in performance.


read the complete articles

NASCAR Is All About Teamwork

Waterjet Cuts Fast in High-Speed Sport

Shops Upgrade Drag-Racer Production

Sunday, September 21, 2008

Redefine English with Wordia – an online video dictionary [victionary]

Bungalow: A small, one-storey home built in a turn of the century style, often with a prominent front verandah.

Says who


Don’t agree with the definition of a word decided by some lingo scholar who hasn’t stepped out of the confines of his classroom in a millennium. No sweats. You now have the power to redefine the meaning of any word you want and announce it to the whole world, courtesy Wordia.

Combining the concept of the Urban Dictionary and Wiktionary and taking it one step ahead, Wordia infuses video into the task of re-defining/inventing words. The results are both quite amusing and, on occasions, more relevant than the more traditional version of dictionary.

If a word has been defined by more than one member, then the other videos are shown on a sidebar for you to select.

After viewing the video definition, you can rate it to indicate its relevancy and accuracy.

It would also be a good idea to impose a restriction on the duration of video, as a dictionary is supposed to provide you with a snappy and concise definition, not a long meandering sermon.

Being a relatively new service, the member count is expectedly low [most of the words defined were from people attending the Edinburgh festival,  probably asked to do so without prior intimation]

It is an interesting and potentially useful service started, provided they enforce strict quality controls on the videos being uploaded. A free online video dictionary, in my opinion, would be a much better way to learn words than the older text-based approach.

So if you have a word that need some re-defining or want to introduce your own concocted word to the world, go ahead and shoot yourself doing so and then share it with everyone on Wordia.


Friday, September 19, 2008 - Sergey Brin’s personal blog

Google co-founder, Sergey Brin, launched his personal blog - yesterday. Coming from one of the co-founders of an entity people have started equating to GOD, it is sure to attract lots of eyeballs and become far more influential than any other blogger can ever hope to be [provided he finds time enough to update it regularly]. As mentioned on his blog, he intends to write about his activities and involvement outside of Google [his involvement with Parkinson's disease research has been posted on the blog].

Surely when it comes to a high-profile celebrity tech bloggers – it doesn’t quite get bigger than this.

Got to know of this through the blog of yet another high-profile tech blogger – Matt Cutts.

Monday, September 15, 2008

Design Engineers, I.T. and Crowdsourcing

The September issue of M.E Magazine carries an interesting article about the future of Design Engineering, the tools used and the nature of their work environment.

It talks of the ability to prepare CAD drawings by simply sketching the design drawing on to the screen, an activity we are more comfortable with, instead of using mouse clicks and command line to do the same.

It also talks about the ability to design a product by holding, touching and moving it while designing even while it exists only virtually. It would be achieved by developing effective Haptic technology [Wii remote and force-feedback devices being the initial iterations of this technology].

But what really got me all excited is the concept of developing a collaborative environment whereby the Design Engineers, separated by vast geographical distances can come together to form a team on an ad-hoc basis, develop the product and once ready for production, disperse to join up on to other such ad-hoc design teams. By leveraging the power of I.T. solutions and connectivity provided by the Internet, such a team can be made possible for even the most complex of Engineering design projects. This concept of forming ad-hoc teams over a virtual environment to develop something and then sharing its profit without ever having to come coming face-to-face with each other is known as Crowdsourcing.

This system of collaboration, if successfully implemented can prove to be a boon for our countries R&D efforts, especially in the Defense sector. DRDO, is presently facing an acute shortage of manpower due to high attrition rate. As a result, quite a few of our country’s developmental programs are running behind schedule. In order to tide over this manpower shortage, DRDO has now decided to recruit people on a program-oriented contractual basis. This, it is expected, would address the manpower issue and help speed up our developmental programs.

I would not be very far off when saying that some of the finest individuals teaching in Universities abroad happen to be from India. As professors, they are entitled to go on Sabbatical for a couple of years [ball park figure]. Having lived abroad for a significant time, they may not be very open to the idea of coming back to work in India even if they wish to give back to the country [different work culture and red-tapism being the major reasons].

By developing an effective system of Crowdsourcing for Engineers, DRDO should be able to tap into this vast pool of brilliant minds who could be employed to be part of our developmental programs. By involving them in the program, not only would we be able to engage the best minds in our programs, but also get back our schedule on track to achieve our targets of excellence.

You may read the full article here

design futures


Sunday, September 14, 2008

Kolkata IndiBlogger Meet 2008

Kolkata Blogger Meet 2008 IndiBlogger will drop anchor at Kolkata with their extremely popular Blogger meet sessions. The meet is tentatively scheduled to be held of the 21st of September [as of 14th September, venue yet to be announced]. If you are as passionate about blogging as the people organizing it and would like to meet and hang out with other such like-minded people, then make it a point to attend the meet. You do need to confirm your participation online beforehand though.

Indiblogger is an online community of Indian Bloggers [or blogs of Indian interest]. The people behind the site have been organizing such offline meets across the country for some time now. Some of their earlier meets were held at Delhi, Chennai, Mumbai, Pune among others.

Though I haven’t quite attended one of these meets myself, going by all reports [and media coverage it receives] it sounds like a real fun meet to attend. If you are in Kolkata on that day and looking forward to do something interesting, then you might want to check it out.


Saturday, September 06, 2008

Create a free mobile blog with your own domain name using Mofuse

If you are accessing this blog from a mobile phone, then you might want to access the mobile version of my blog – If you have an existing blog, then you can make it easy to access through a mobile phone using Mofuse.

Mofuse is a free service that will optimize your existing blog to make it suitable for viewing through a mobile phone. Registration is a simple quickie affair. On successful registration you would get an address that looks like, where example is what you choose as your subdomain while registering. So far so good.

If you have your own domain name, then Mofuse allows you to use it along with your mobile blog. Please note that though you will use your own domain name, while registering, you must enter a suitable * name – it will be used later when you are setting up your domain name with the mobile blog.

Once registered when you go to your control panel, look at the bottom left corner and you will find your mobile blog listed.

Mofuse mobile site

Mofuse custom domain name

Clicking on it will open a page that lets you customize your mobile blog. At the top left corner you will find the, Custom Domain link – click on it.

In the page that opens up, enter the domain name along with the desired sub-domain you want to associate with the mobile blog. I used m as the sub-domain and entered it accordingly.

custom domain name with mofuse

Look below and you will find the instruction to add a CNAME value to your domain records. Note it down and you may now log out.

Mofuse CNAME value

Now go to your DNS Nameserver control panel and add the CNAME value for the domain name. Once it has been added, you may have to wait up to 48 hours for your mobile blog to be accessible.

DNS Nameserver CNAME value for Mofuse

Once accessible you could let people know about it so that if they access your blog from their mobiles they can view a mobile-phone optimized version of your blog. Mofuse recently made all the feature of their paid version accessible in the free version too. Using these features you can also create pages for your mobile blog, independent of your existing blog.  Play around with it to pimp up your mobile blog. If you are an iPhone user, the you may want to visit the iPhone optimized version of my blog –

You can also create and customize your mobile blog with the help of WireNode. What is unique about WireNode is that you can create a full standalone mobile blog with it.

However it does not allow you to use your domain name. Your mobile site will get an address like My mobile blog created with Wirenode – Haven’t worked much on it. Just a kludge job.

Hope you found it useful.


Going through gazillions of blogs and sites, I found that I posses no new insight on the GBrowser. So no re-inventing the wheel. But I did come across this site which has themes for the beautifying Chrome. You may get it here – FreeChromeThemes.


Thursday, September 04, 2008

Get a free Game CD from

Free Zapak Game CD

Zapak Gaming, owned by the Ambani is giving away free CDs of their newest online game game – some racing game it appears. Go ahead and order your copy. Will reach your place in 10-15 days [so they say]. Offer valid only in India.

Thanks Manish.



P.S.: If you have subscribed to my blog’s feeds and find that it is occasionally re-sending you some old, already received posts, then please do let me know. Though I am not sure what is causing it, I would try to figure it out.

Tuesday, September 02, 2008

F-35 Joint Strike Fighter: Manufacturing 03 – The Digital Thread

Previous parts – Part 1, Part 2

The Digital Trail

CFD model of the F-35 Joint Strike fighter

The need to be provided with easily comprehended, accurate data in a timely manner is of absolute imperative when on a developmental pursuit of the magnitude of the Joint Strike Fighter [JSF] program. The scale of operation of the Joint Strike Fighter program is such that it is bound to generate a gargantuan amount of data that needs to be accessed by hundreds of concerned individuals situated in disparate geographical locations.

Equally important is the fact that this data must be accessed in a manner that is easily comprehended by the seeker and it must leave no room for misinterpretation that could possibly result in costly losses. Any change in the value or nature of the data must be reflected accurately and instantly all across wherever that data is accessed so that it can be taken into account while taking decisions. Efficient management of the generated data and maintaining its integrity is thus of paramount importance in ensuring the success of the JSF program. Taking this end into consideration, the data management and transfer is handled by what has now come to be known as The Digital Trail.

The digital thread is in essence an interlinking arrangement where the suite of software solutions being used for the Joint Strike Fighter program have access to a common, central information database from which it can both retrieve and submit data which can then be accessed by the other softwares as and when needed by them. Data generated at each step of the developmental process in the JSF program is automatically updated into the database, that then makes it available for access by anybody who seeks the data. This digital information database ensures that any change in value of the data is duly and accurately reflected at all points of access. Thus the seeker receives up-to-date and accurate information, that enables him/her to take the appropriate decision involving that data. By linking the various softwares involved, it is possible to transfer the same generated data from one software package to another. Thus the name Digital Trail. Digitized data also ensures data integrity. This data that is generated by the design engineers would be used through the entire life-cycle of the aircraft. The goal is to reuse the original data without having to reproduce it manually that would increase the chances of errors creeping in.

The backbone of this Digital Thread is the Product Lifecycle Management [PLM] software solution deployed to handle the generated data and co-ordinate a collaborating network on a global scale. It has been estimated that the approximately 1.5 million parts aircraft has generated around 20 Terabytes of data till date and is only expected to increase with time, thus requiring a robust scalable platform. This increasing product database will have to be managed through the estimated 50 year lifecycle of the aircraft. To manage this data, the JSF team had acquired the Metaphase Enterprise Software developed by the Structural Dynamics Research Corporation [SDRC]. This has since been upgraded to the latest Teamcenter 2005 Product Lifecycle Management Software developed by the Unigraphics Corporation [which acquired SDRC and renamed the product to Teamcenter Enterprise, which has since itself been acquired by Siemens]. The Joint Strike Fighter program currently uses around 13500 licenses of the Teamcenter solution.

The objectives of the PLM software in the JSF program is even more stringent and challenging considering that it has to handle data requisition of partners from different countries. While providing them with the data round the clock 24/7, the software ensures that the data provided pertains only to that part of the program in which the partner is involved and must be in conformance with US regulatory laws like the International Traffic in Arms Regulation (ITAR) as also protection of Intellectual Property Rights [IP].

Yet another challenge the PLM software addresses is coordinating the manufacturing of the various sub-assemblies at different locations which would then be brought to the Final Assembly and Checkout [FACO] line at Forth Worth, Texas and in future Italy and UK where FACO lines are proposed to be set up. It results in quicker assembly time as they are being assembled in tandem as opposed to sequential assembly. This is a marked deviation from the earlier practice of assembling the whole aircraft from start to finish in one location. It drastically increases the number of parameters the software has to monitor and keep track of while ensuring the smooth functioning of the process. Efficient and effective interaction with the supply chain to provide the right part at the right time in the right quantity at the right location has to be effectively tackled by the PLM solution. Some of the other tasks the solution performs include managing multiple bills-of-materials, material specifications, parts catalogs, detailed product geometry created by multiple computer-aided design (CAD) systems among others.

Such requirements, when there is a large amount of overlapping of interests, demands a PLM solution that performs at the absolute best. Effective use of the PLM solution through the developmental phase of the aircraft brought about a saving of around $62 million USD. It would not be inappropriate to say that the JSF program is changing the way one would expect PLM to function and lessons learned here would find application in PLM solution deployment in other industries.

The aircraft has been designed completely in solid model using the Catia V4 and V5 packages developed by Dassault Systèmes which were run on Silicon Graphics Octane2 and Silicon Graphics Fuel workstations. Silicon Graphics Visual Workstations along with Onyx2 systems and Origin 2000 servers were used for simulation and analysis. Besides achieving an accurate, detailed representation of the aircraft to be built, this also ensured that each and every point on a designed part has been referenced accurately with respect to the other points on the part in a 3-D space. The relative positions of each and every point of the part is available in a digital format. This helps CNC-controlled machine tools to accurately orient the tool with reference to the component surface. As a result, parts can be accurately machined to extremely close tolerances using the CNC machine tools interfaced with the software. This would not have been easily achieved earlier. The high quality of machining achieved is quite effectively reflected by the fact that almost no 'traveled work' is needed on a part, i.e., a part that is manufactured and brought to the final assembly location does not need a rework at the final assembly plant before mating it with other components. This digital definition of the product will then be used through the entire lifecycle of the product – tooling, manufacturing, assembling as well as support.

Catia Netaphase Interface [CMI] developed by T-Systems

Yet another evidence of the Digital Thread and its associated benefits - the JSF team directly transfers data from its Teamcenter Enterprise product management system into CATIA and vice versa. This enables data generated by Teamcenter to be visually represented with ease in CATIA without resorting to cumbersome, time consuming, manual data transfer. This also aids the accuracy of data transferred. This seamless integration and transfer of data has been made possible using the commercially available Catia Metaphase Interface [CMI] system developed by T-Systems, which has since been customized to cater to this program.

The Virtual Product Development Initiative [VPDI] of Lockheed Martin aimed to create a complete virtual environment for designing and testing the aircraft. Its objective was to create a platform where design testing and analysis of the aircraft could be performed in a virtual environment, based on which subsequent design iterations too could be made and tested in the same environment. This would do away with the need to create a physical model to test the initial iterations and thus push the creation of the physical model right to the end when in the process of final design validation. It aimed to provide everyone involved in the product definition with the relevant information and latest version of sought data and a platform to collaborate their efforts without being hindered by the distance of their physical location.

It has acquired licenses to use Deneb Robotics Inc's simulation software to test and validate its manufacturing and maintenance process in a virtual environment before implementing it on the floor. This virtual environment is being used to simulate the different aspects of JSF design, manufacturing and support which allows the team to detect any flaws and bottlenecks in the process that can be sorted out before being actually physically set up.

By interfacing it with Catia, it achieves a seamless process of both design and process testing as the designed models can now be easily transferred from Catia into Deneb's solution and its result transferred back into Catia for action to be taken if necessary. Lockheed Martin says that this has reduced cost for production, development and support by 70% to 80% in some areas as also the total cycle time.

Some other software solutions deployed by Lockheed Martin as part of the VPDI initiative include Engineering Animation's [since renamed to Demonstratives Inc.] VisFly solution, that let its Engineers situated in geographically separated locations to collaborate with one another using virtual models in real-time. It also used the company's VisMockUp and VP/Sequence solutions to evaluate models and analyze the parts manufacturing and installation.

NGRAIN's 3-D models being used for mantainance tasks This digital thread is being tapped into for preparing an accurate, standardized training and maintenance system for the aircraft. As part of the Joint Strike Fighter's Autonomic Logistics Information Systems (“ALIS”) program, NGRAIN was awarded a contract is to provide them with a customized version of its 3-dimensional performance support solution. Using this software, any fault detection or repair work that needs to be carried out can be conveniently marked on a virtual 3-D model of the aircraft, which can then be sent over to the concerned personnel instantly for corrective action to be taken. It would be of no consequence even if the person to whom the information is being transferred to is located across the continent. Thus one would be able to completely do away with the cumbersome, time consuming and error-prone practice of filling up paper reports that 3-D model developed using NGRAIN's solution needs to be forwarded manually to achieve the same end result. This solution would be customized for installing on to portable devices carried by the aircraft maintenance personals, thus giving them easy access. Similarly, aircraft assemblers would be provided with a 3-dimensional representation of that portion of the aircraft that he would be working on along with all the necessary information neatly represented on it. This would greatly simplify the worker's understanding of the instruction, resulting in improvement of his work performance. The ALIS program is expected to reduce support cost by 20% compared to practices adopted for legacy aircrafts. Implementing the Autonomic Logistics Information Systems would also reduce training time of personnel's by 60%, thanks to the easy to understand 3-dimensional training system developed using NGRAIN's solutions.

The program has additionally deployed Visiprise's process-management and manufacture change management solutions in order to cater to the demands of the Joint Strike Fighter program.

Lockheed Martin recently awarded SAP AG to provide its ERP solution for the JSF program. This task was earlier being handled by its own custom-made Production & Inventory Optimization System (PIOS). SAP's solution would offer better integration of the ERP with the digital thread than its current system.

Even the task of painting the aircraft body would be making use of the digital thread. Using Delmia's simulation software [Delmia has since been acquired by Dassault Systèmes], CTA Inc, the system integrator appointed for the job, intends to program and simulates the paint job process of the aircraft before giving instructions to the machine. Based on aircraft geometry and plant layout, it would check for any potential obstructions in the arm's trajectory and optimize the path followed to apply an even, good quality coat of paint without wastage. The simulation would be able to take into account multiple robotic arms, use of fixtures and material handling devices that would be used in the painting process. Delmia's software suite consists of the IGRIP resource modeling and simulation software with UltraPaint option. The IGRIP is also being used to simulate the clamping and joining of drilled components in the assembly of the aircraft. The latest Catia models are made available to these simulation solutions to generate the most accurate results.

The Joint Strike fighter development program employs a host of software solution performing various tasks. By performing major tasks and operations in a virtual environment and linking the numerous softwares involved to share data among one another, the JSF program develops a truly unique platform for product development and data sharing.


PS: I am in the process of compiling my sources. Will post it as soon as I complete it.